NASA TN D-1615

NASA TN D-1615

14313717
(/700/[?""(

TECHNICAL NOTE

D-1615

POSTBUCKLING EFFECTS ON
THE FLUTTER OF SIMPLY SUPPORTED RECTANGULAR PANELS
AT SUPERSONIC SPEEDS
By Robert W. Fralich

Langley Research Center
Langley Station, Hampton, Va.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON March 1963







NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHENICAL NOTE D-1615
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By Robert W. Fralich

SUMMARY /;3t7/’7

A theoretical analysis is given for the flutter of simply supported rectan-
gular panels subjected to supersonic flow over one surface. Postbuckling effects
of in-plane edge loads and in-plane shortenings on the flutter speed are investi-
gated. The von Kdrmén large-deflection plate theory is used in conjunction with
linearized static aerodynamic strip theory. A Galerkin procedure using the first
two static buckling modes is employed to find the flutter criterion for panels
with ratios of length in the streamwise direction to half-wavelength in the
cross-flow direction between O and 2.

INTRODUCTION

Panel flutter at supersonic speeds has been encountered in the operation of
aircraft and missiles. (See, for example, refs. 1 and 2.) A flutter analysis
for aircraft and missile panels is complicated by the presence of midplane com-
pressive stresses caused by aerodynamic heating associated with the supersonic
velocities and by the external lift and drag loading on the structure. The
analysis 1s further complicated if the compressive stresses are of sufficient
magnitude to cause buckling, because in the postbuckling state the flutter prob-
lem becomes nonlinear.

In an effort to determine effects of midplane compressive stresses on
flutter, a number of experimental and theoretical investigations have been made
for rectangular panels of uniform thickness which are flat in their unbuckled
states. In these investigations, both unbuckled and buckled panels subjected to
a supersonic flow over one surface were consldered.

In the experimental investigations (see, for example, refs. 3 to 8), the
midplane stresses are introduced in various ways - by mechanical means, by
radiant heating, or by aerodynamic heating. In references 3 to T for finite-
width panels the susceptibility to flutter was found to depend on the streamwise
compressive stress in the panel not only for unbuckled panels but also for
buckled panels. Some insight into the nature of this dependence was found in
references 4 to 7. It was noted that increasing streamwise compression (or



heating of a restrained panel) first decreases the dynamic pressure for flutter
(flutter speed) and then, after buckling, increases it. On the other hand, the
experiments of reference 8, which are applicable to infinitely wide panels, do
not show an appreciable change in flutter speed after buckling.

Effects of midplane stresses were investigated theoretically in reference 9
for unbuckled simply supported panels of finite width. The variation of flutter
speed with midplane stress was found in qualitative agreement with tests of
unbuckled panels. In another theoretical investigation of unbuckled simply sup-
ported rectangular panels (ref. 10), nonlinear aserodynamic and structural effects
were considered. The investigation of reference 10 rather than being concerned
with finding flutter boundaries was concerned with the order of magnitude of
initial disturbances necessary to produce flutter for speeds below those given
by the classical flutter boundary.

Past theoretical investigations of the flutter of panels in the postbuckled
state have all been limited to the two-dimensional ldealization, the infinitely
wide panel. (See refs. 8 and 11 to 16.) In reference 12 the static equilibrium
positions of the buckled panel were considered and a critical speed of flow was
found above which no stable static equilibrium existed. It was suggested that
flutter would occur above this critical value, which was termed the "transta-
bility" speed. References 8, 11, and 13 to 16 considered the dynamic problem for
various types of panel support conditions. As a result of the assumed two-
dimensional idealization, all these analyses (except ref. 15) yielded flutter
boundaries for buckled panels that are independent of variations of the magnitude
of the midplane loads and, hence, are not in agreement with experimental observa-
tion for panels of finite width. In reference 15 additional effects of initial
curvature and of static-pressure differential across the thickness of the plate
were considered. These effects were found to increase the flutter speed over
the entire range of values of midplane loads.

The present analysis is concerned with buckled simply supported rectangular
panels having finite length-width ratios. In order to account for effects of
various types of edge connections on in-plane displacements, elastic edge sup-
ports are included in the analysis. Two types of in-plane boundary conditions
are considered; in the first type the magnitudes of the in-plane loads are speci-
fied, and in the second type the total in-plane shortenings and a uniform temper-
ature change are specifled. Linearized static serodynamic strip theory is uti-
lized in conjunction with the von Karmin large-deflection plate theory. Effects
of static-pressure differential, which appear in many experimental investigations,
are included in the derivation. A Galerkin procedure, with two static buckling
mode shapes, 1s applied in order to find the flutter speed. Flutter boundaries
for zero static-pressure differential have been calculated for several specified
in-plane boundary conditions for ratios of the length in the streamwise direction
to the half-wavelength in the cross-flow direction equal to 0, 1/2, 1, and 2.
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SYMBOLS

coefficients in displacement expressions (egs. (24) and (25))

length of plate in streamwlse direction
width of plate in cross-flow direction

coefficients for lateral displacement
coefficients for static lateral displacement

coefficients for dynamic lateral displacement

EhD

flexural rigidity,
12{1 - |.12]-

Young's modulus
plate thickness
number of half-waves in cross-flow direction

amplitude of dynamic lateral displacements

aerodynamic loading per unit area, positive in z-direction
Mach number

parameters defined in equations (3la) and (31b)

midplane stress resultants

a2 Nya?
nondimensional midplane stress resultants; ) 3 , and
N g2 T 72D
xy?
, respectively
7D

average in-plane edge loads per unit length, positive in
compression

an2

and
n2D

nondimensional in-plane edge loads per unit length;
P.al
°p

, respectively
7



D, Av

AT, 07

=]

X,¥,2

Bx) By

Ex} Ey

static-pressure differential between surfaces of plate

L

nondimensional static-pressure differential, -2 %%-Ap

D

dynamic pressure, %ﬁ%wg

temperature change, positive for increase

2
nondimensional temperature change, Egé—a AT
n<D

time

in-plane displacements, positive in x- and y-directions,
respectively

nondimensional in-plane displacements, positive in x- and

2
y-directions; B2y and E%Q—v, respectively
7°D 7=Db

total shortenings in x- and y-directions, respectively

2
nondimensional in-plane total shortenings; Eha Ay ang Eha Av,
2D n2Db

respectively

free-stream velocity

lateral deflection, positive in z-direction

nondimensional lateral deflection, positive in z-direction WJ%?

rectangular Cartesian coordinates (see fig. 1)

coefficient of thermal expansion

twice the flexibilitles per unit length of elastic supports
(flexibilities associated with P, and Py, respectively,

see egs. (11))

nondimensional flexibilities; %%BX and %?By, respectively

mass density of plate material



€xJ€y’7xy middle-surface strains
16qa3
A speed parameter, m
Zr"BD
Aer flutter-speed parameter
H Poisson's ratio
1% ratio of panel length in streamwise direction to half-wavelength
in cross-flow direction, Ja/b
g, nondimensional coordinates; x/a and y/a, respectively
o) free-stream density of fluid
: 22, [D
T nondimensional time, =%t |=—
a® {7h
w circular frequency

L L L
Vh' = al.}. + 2 9 + ah
xt  xDy? dy
When subscripts x, y, t, &, mn, and 1 follow a comma, they indicate
partial differentiation with respect to x, vy, t, &, m, and T, respectively.

STATEMENT OF PROBLEM

The configuration analyzed in
this report is shown in figure 1.

y
PY
It consists of a simply supported th{H{H{H{H&H* %w\;r%

flat rectangular panel of constant T_

thickness h with air flowing at a

Mach number M over the upper sur- M—s & L b

face. (No flow of air is consid-

ered beneath the panel.) The in- S s

plane displacements at the edges of H*fH‘”*%”’H* 18,7 %2
p‘ v

the plate are considered uniform
but restrained by elastic supports

with flexibilities %ﬁx and 2By

t4

I i
| | Vil
per unit length. Corresponding » ﬁl~ )
average in-plane edge loads Px APz
and Py per unit length (POSitive Figure 1.- Rectangular panel and coordinate system.

in compression) act through these
elastic supports. No in-plane
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shearing forces are applied to the plate. For the first type of in-plane
boundary condition considered, the plate is subjected at its edges to specified
average in-plane edge loads Py and Py per unit length. For the other type of
in-plane boundary condition considered, the plate—elastic-support combination is
subjected to specified uniform total shortenings Au and Av vwhile the plate is
subjected to a given temperature change AT.

Basic Equations
In the present analysis, the von Kirmin large-deflection plate theory is

applied. For an aerodynamically loaded oscillating plate, the basic equations of
this theory can be written as

DV - New,xx - NyW,yy - 2Ngyw,xy + 7hv, g = 1 (1)
Ny, x + Ngy,y =0 (2)
Yy, v + Mxy,x = 0 (3)
5
where D = —ENZ 45 the flexural rigidity of the plate, 7 1is the mass
12(1 - u?)

density of the plate material, E 1s Young's modulus, and p is Poisson's ratio.
Also, w 1s the lateral deflection of the plate; NysNy, and ny are the mid-
plane stress resultants; and 1 1s the lateral load per unit area due to the
aerodynamic pressures. The variasbles w, Ny» Ny, ny, and 1 are functions

of x, ¥y, and t.

In this analysis use is made of the linearized static aerodynamic force
approximation. (See refs. 9 and 11.) This aerodynamic approximation previously
has been shown to yield flutter boundaries which are in good agreement with those
yielded by more exact aerodynamic theories provided that the Mach number is
greater than 2 and provided that the mass ratio (ratio of air-panel densities
times the length-thickness ratio of the panel) is sufficiently small. (See
ref. 9.) In addition it was demonstrated in reference 9 that for sufficiently
high values of the ratio of cross-flow width to streamwise length (greater than
1/2) aerodynamic strip theory ylelds results in good agreement with surface
theory. Upon the assumption of linearized static aerodynamic strip theory, the
aerodynamic lateral loading is given by

1= -%l—'w,x + Ap (4)

where %%W,x is obtained from Ackeret's theory and Ap 1is the static-pressure



differential between the surfaces of the plate. Here B = JMe -1 and
q = %pvme, where q 1s the dynamic pressure, p 1s the mass density of the air,

and V, 1is the free-stream velocity of the airflow.
The stress-resultant—strain relations, vhich take into account effects of

a uniform change in temperature are given by the following equations:

'\
Nx=1.EL“2.E:X+u€y- (l+u)aA[[I[

~

_ _Eh
Ny—mé[ey'l'}iex- (l+p)@Aﬂ

(5)

N Eh

Xy~ 2(1 + u)yxy J

where €, and €y are the middle-surface strains in the x- and y-directions,

respectively, Txy is the middle-surface shearing strain, a 1is the coefficient
of thermal expansion, and AT is a uniform temperature rise of the plate.

The strain-displacement relations are given by

2
€ = U,x + %w)x
- 2 &
ey = V,y + %‘”,y (6)
Tay = O,y * V,x Y ¥y

in which u and v are the displacements of the plate in the x- and
y-directions, respectively.

The boundary conditions for simply supported edges are

w(0,y,t) = w(a,y,t) = w(x,0,t) = w(x,b,t) =0

(7)
W,Xx(o;y,t) = w,xx(aJY;t) = W’W(X,O,t) = w,y-y(x:b’t) =0



whereas those for uniform displacement of each edge 1n the plane of the plate are
7m”ﬁ;&(0,y,t) = u,y(a,y,t) = v,x(x,O,t) = v,x(x,b,t) =0 (8)

and those for zero in-plane shear stress at the edge of the plate are
v’x(O,y,t) = v,x(a,y,t) = u,y(x,O,t) = u,y(x,b,t) =0 (9)

The boundary conditions on loads are

b b 3
A (Nx)x=0 dy = \/; (Nx)x=a dy = -Pyb

»/:)a (NY)y=0 ax = La (Ny)y= dx = -Pya

) (10)

in which Px and Py are the average edge in-plane compressive loads per unit
length. (See fig. 1.)

The boundary conditions given by equations (7), (8), (9), and (10) are
sufficient if Py and Py are specified values. On the other hand, 1f the

total shortenings of the plate—elastic-support combination are to be specified,
those shortenings must be expressed in terms of the edge displacements and edge
loads on the plate as follows:

M

u(0,y,t) - u(a,y,t) + ByPy
(11)

Av

v(x,0,t) - v(x,b,t) + ByPy

where Au and Av are the total shortenings (shortening of the plate plus
in-plane displacement of the elastic supports) in the x- and y-directions,
respectively.

Nondimensionglization of Basic Equations

In the ensuing analysis it is convenient to represent equations (1) to (11)
in nondimensional form. After substitution of the expression for aerodynamic
loading (eq. (%)) into equation (1), the equilibrium equations (1) to (3) may be



—  Npa2 - Nga? _ N, ,82 3
written in terms of W = Jﬁi%, Ny = x2 » Ny = 2 » Mgy = xy> s A= 16qa
- D 72D 72D 72D ZxtpD
and 4Op = ———J Ap as follows:
24pf D
1 (= — = 1 T ~
n—g("’,gggg + 2V gk * W,Wm)- ;2-( x¥,t8 + MgV nq ,En)
+ gﬁ,g + Vo =0P (12)
Ny g + Nyy =0 (13)
Ny o+ Neyg =0 (1)
where &t =% X and T —-Jét D
a’ 2 7h

The stress-resultant—strain relations given by equations (5) and the
strain-displacement relations given by equations (6) upon nondimensionalizing
become
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¢, - 2D (‘Rv + Ly 2) \ (16)

2
_ 22D (= . b 1= =
Txy = Eha2(?’n tav,e ;Ew,éw:n>)



- o 5
where AT = Egé_q,am, q = E%gu} and ¥ = ga V.
<D 7<Db

The boundary conditions given by equations (7), (8), (9), and (10) when
nondimensionalized become

?(O,T],T) = W(:L:Th"') = W(gyo,v"l’) = W(EJ‘%)T) =0

(17
T,ee(0,m,m) = T pg(1n,m) = % q(8,0,7) = W:nn(“%”) =9
G,n(O,T\,T) = ﬁ,q(lﬂlﬂ') =V §(§,O,T) = -‘;,g( :a:"') =0
(18)
V,g(an:T) = V,g(l)ﬂ)'r) =u n(g}OJT) = E,n(gi ;T) =0
anc
bfa bfa )
g N =2 N dn = -P
b fo (X)§=o M= fo (Nx)g-l L
N N > (19)
_ 4 - — _ 5
fo (Ny)n=o : fo (Ny)n£ at - B,
a Y,
- P.ac — Pya2
where Py = ngD d Py = neD .

Nondimensionallzation of the expressions for total shortenings from equa-
tions (11) ylelds

AT = (0,n,T) - u(1,n,T) + Exisx
(20)

Av = V(§,0,T) - V(‘g,g—,‘f) + -B_yﬁy

b=

— _ Eha = _Ens? ,, 7§ _En T
vhere Au = 2D Mu, AV = —om Av, By = ETBX’ and By =

o;LgJ

yo

10



ANATYSTS

The analysis is an approximate modal analysis consisting of two parts.
First, the in-plane displacements u and ¥ and the stress resultants Ny, Ny,
and ﬁ%y are obtained in terms of an expression for lateral deflection W that

includes two static mode shapes. Then, the resulting nonlinear equation (12) for
lateral deflection W is solved by means of a Galerkin procedure in order to
£ind the conditions for flutter. Flutter criteria are found for the two types

of boundary conditions considered, specified edge loads Py and Py and specil-

fied total shortenings Au and AV with a temperature change AT.

Solution of In-Plane Equilibrium Eguations
in Terms of Lateral Deflection

Substitution of the nondimensional strain-displacement relations (eas. (16))
into the expressions for stress-resultant—strain relations (eqs. (15)) yields

S
Boo Ll fo, e e, s Lfe 24w 2) - T
Ny = T ue[é’g +uzv,q + gﬁe(w’g + WV L ) (1 + u)A%J

T~

N, = —=|b% T L (% 244w .4 - T
Ny —— Evm + Ul + 21t2(w,n + UV g ) (1 + u)AT:] (21)

T = 1 = b l= =
NXY - 2(1 + 1) EJ‘JTI + a st + ;§W,§W:T\]

./

Then substitution of the stress resultants from equations (21) into the equilib-
rium equations (13) and (14) yields

= 1 - 1+ b 1<-2 -2) 1l-u(——>\
u + — + = = -—\W + uw - = W W
144 D PRI o a »En py2 s& P St g2 2 287 1
5(22)
e G lombp, Lliuwg o 1z 2, 5.2) (Ll-ug.g )
a’,mm 2 a,t¢ 2 8N T T 52\ )8 2 2 \8hn/,
PR ;
from which u and ¥V can be found in terms of the lateral deflection W,
The lateral deflection W 1is represented by the expression
F = (cl sin 7t + Cp sin eﬂg)sin%ﬂ (23)



which satisfies term by term the boundary conditions given by equations (17). It
should be noted that the coefficients C; and Co are functions of time and are
to be determined through the application of the Galerkin procedure. When the
expression for W from equation (23) is substituted into equations (22), the
solution of equations (22) subject to the boundary conditions of equations (18)
yields

T = Ap + Mt - (2 + w?)01Cp sin at - 1—%—;(1 - wv2)c1%sin 2xt

- _l_(e - grvﬂ'C‘)clfc2 sin %xt - -1—(1+ - uv2>C2251n bt

12x 321
2 2 2
+ ﬁ'—0—2-2+9V (b - W7) sin xn¢ +C—l-sin2ﬂ§
ot (1 + hve)g 16m
C 2( - 2 2
+J&2+viw+hv)sin5ng+cﬁ—sinhxg cos 2xtvn (24)

and

¥ = Bp + Bin + %V L [(C'l2 + C22)v2 - u(012 + l#ngﬂ

167ve
2 2
-3112-14-91' V)COSﬂ§+-C—l—COSE:nT§
8n (l + J_‘_vg)Q 167
C1Cp (9 - wiv2) Co2
+ —==£|1 4+ 22— __Llcos 3mE + —— cos 4wt ) sin 2nvq (25)

where v = ‘La-.
b

The stress resultants are obtained in terms of the coefficlents Ay, By,
Ci1, and Co by substitution of the expressions for W, U, and Vv from equa-
tions (23), (24), and (25), respectively, into equations (21). In order for N,

and T\I'y to satisfy the boundary conditions given by equations (19), the coeffi-

cients Aj; and B; must have the values

12



Al = -§X + |..L-§y + AT - %(Cle + )-+C22>
(26)
By = &|-P, + uP. +A-'Z-["-lv2(C2+C2)
b X ) 1 2
With these values, the stress resultants become
Ny = =Py + "g(cl + UCo ) - 7 08 g + - cos 3m€| cos 2mvn
(1 + w2) (9 + WA3)
T - B+ Y20.c veg.2 ot - Yo0.0 v20,2cos Unt
Ny = -Py + l+;Lecoswtg- 51 cos 2nE - n 1Co cos 3mE - 5Ca"cos 7
5(27)
9v2C1Cp N2C1Co
+ — cos mE + — cos 3nE| cos 2nvy
b1 + W2) 49 + h?)
3 2
— v-C1C v=C;C
Nyy = ___9___1_2_2. sin nt + -—2-#—-5 sin 3nt|sin 2mvy
2(1 + W2) 2(9 + W2) )

Substitution of the expressions for u and VvV from equations (24) and (25),
respectively, into the equations for total shortenings (eqs. (20)) yields

NI = (l + Ex) Py - uPy - AT + -é—(clg + )4-022)
(28)
AT = (1 + Ey) Py - uPy - AT + Ysﬁ(cle + 022)
Solving equations (28) for Py and §y yields
_ (1+Ey)A3I+pAV+ (1+Ey+u T - %(1+3y+pv2)012 - %—E&(1+Ey) +ux:2]crr_,2W
SRS
L (29)
_ owA+ (l + EX)AV + (l + By + p)A'T- - %u + vz(l + Eyi\clz - -g-[lm + v2(1 + Ex)]cea
Fy = (l + Bx)(l + Ey) -
7

13



Approximate Solution of Equilibrium Egquation for
Lateral Deflection by Galerkin Technique

The approximate solution of equation (12) for lateral deflection by a _
Galerkin technique is now considered. The stress resultants Ny, Ny, and ny

are given in terms of C; and Cp and in terms of specified ?& and ?& by

equations (27), or they can be given in terms of C; and Cp and in terms of
specified AU, AV, and AT by equations (27) after substitution of
equations (29).

When equations (23) and (27) (or eas. (23), (27), and (29)) are substituted
into equation (12), the following equation results after expansion and
simplification:

2‘“7\C1 cos nt + Eﬁl + (—Ml + P1012 + QC22)C]] sin xn§

8
. 5 2252 I L9 5
+E'C12+302 +—-————Clsin51r§-:—\£€5+ 5|C2Cy sin St
(1 + 1v2) (9 + 4v2)
+ 2-“7\02 cos ont + Efe + (Mp + PoC? + ch)cp;l sin ont
- %%,3 + ————22———5 C1202 sin bzt - %% 025 sin 6%t ) sin TV
(9 + hvg)
b, 2 L L, 2
+ (- —1'6'(012 + 1+022) g2 T2, vl Cy sin =t
1 16(1 + W2)%  16(9 + W2)?
L 4
- 8lv 2C22Cl sin 3nt + L4 éCQQCl sin 5né
16(1 + bv2) 16(9 + Wv2)
by 2 b 2 1
) %(012 + bog2) + v S+ v G 5 Co sin ent
16(1 + W2)°  16(9 + hvg)J
Vh_ 2 -
+ 201 Co sin bnt) sin 3nvn = Ap (30)
16(9 + Wv2)

1L



where, for specified Py and Py,

Pl—%é-(l-i-vb’)
Pz_:ll—6(16+vl*)

-1 L 81y S
A 6(1 + w2 ! 6(9 + W)

or, for specified Au, Av, and AT,

] M = -(l + V2)2 +

[(1+§y)+uv2&_1+ Kl+§x)v2+p&'i+ K1+Fy)+(1+ﬁx)v2+u+pvﬂﬁ

> (31a)

N

( +§x)(1+§y) -

Mp = -(1& + v2

E\L1+By +pv_]Au+[1+5xv +h€}Av+E&1+ﬁY (1+'§x)v2+hu+uvﬂzﬂ"

(l + sx)(l + By) -
(l + Ey) + e + (1 + Ex)v’*
8B1 + Ex)(l + Ey) - p2:|
16(1 + Ey) + 82 4+ (1 + Ex)vl‘

(2 + B)(1 + By) - o]

Blvh' + vh' N
161 + uv2)2 16(9 + hva)a

P, = -1%(1 + v’*) +

P2=%(l6+vl")+

1»(1 + Ey) + 5002 + (1 + Ex)vh
BK:L + Ex)(l + Ey) - ue:'

Q-ia(l+v’+)+

In equation (30) the double dots over the coefficlents
the second derivative with respect to T.

> (31v)

Cy, and Cp represent

The Galerkin method is now applied by multiplying equation (30) vy
sin rn€ sin ._J%f-_’l (where r = 1 and 2) and integrating over §& from 0 to 1 and

15



over 1 from O to b/a. The resulting equations are written as follows:
~

Cy + (-Ml + P1C1° + che)cl - N = B%E - (_l)ﬂ@
> (32)

62 + (-Mg + P2022 + QClE)CQ + %Cl =0

S

The coefficients C; and C, appearing in these nonlinear simultaneous differ-
ential equations can be expressed as

i

c1(m) El + 61(7)

(33)

I

~ A
Co(1) = Cp + Co(7)
vwhere El and 82 give the contribution of static deflection in the presence of
airflow and 61 and 62 represent oscillations about the static configuration.
The coefficients 51 and 82 are determined from the following equations for

static deflection in the presence of airflow:

(“Ml + P87 + Q522>51 - Np = 585[1 - (-l)‘ﬂAi@' (34)

(—M2 + P2822 + Q512)52 + )El =0 (35)

If equations (33) are substituted into equations (32) and account is taken of
equations (34) and (35), and if attention is restricted to small oscillatjions
about the static deflection shape so that only linear terms of C; and Co are

retained, then there results

1 + —Ml + 5?101 + QC2 Cl + 2QC102 - A C2 =0
| (%)
Cp + (26818 + N)Cp + (Mp + 32,002 + Q512)0p = 0

16



A solution of equations (36) can be written in the form

1085, (2B
‘A J'f2 D
Cl = Kle
5 (37)
1 szg
~ 72 VD
C2 = K2e
where o 1is the circular frequency, which can be complex.
Substitution of equations (37) into equations (36) yields
7ha’+ ~ D ~ D ~
I 2 -y + 2P18)2 + 652Ky + (26818 - A)ke = 0
), (38)
(2Q6162 + 7\)Kl + —L}-’E—sz - M2 + 5P2’622 + Qa‘lg K2 =0

D

The circular frequency o, obtained by setting the determinant of the coeffi-
cients of Kj and Kp in equations (38) equal to zero, 1s given by the
expression

o2 = 2 () o (or G52+ (2 + O

i\/[EMl + My + (BPl - Q)612 + (Q - ?2)82?]2 + 16Q2'612’622 - 1*7\2} (39)

The static configurations possible in the presence of airflow are found by

solving equations (34) and (35) for €1 and Cp. For each speed parameter A

there may be several static configurations possible, each configuration corre-
sponding to a solution of equations (%4) and (35). For example, if Ap =0 or
if 3 1is an even integer one such solution is the flat (or unbuckled)
configuration

El = 52 = 0 (hO)

which satisfies equations (34) and (35) for all values of A. The other solu-
tions of equations (34) and (35), corresponding to different deflected configura-
tions, are obtained in the following way.
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First, solving equation (35) for A yields

A=-

}S'leﬂl

(4!2 + P2622 + Qalz) (k1)

This value of A 1s then substituted into equation (34) and the resulting equa-
tion is solved for 622:

C = —— M2_2C
2 2P, L1

* \ng - 20592)" - kel P (M + 21Ty 2) 4 3“22[1 - (-l){}A‘ﬁCl (42)

Substitution of the expression for 622 from equation (42) into equation (41)
yields

1 ~ 2 8P,
7\2 = 52 2Q2M2Cl + M1P2 + (Q - P1P2)Cl + 3? ( l)'j }{ MQ + QQC]_ )

t\ﬁug - chlE) - hpgcf(_ul + Plle) + j—ee[l - (-1)-ﬂApcl (43)
7

For each real value of (7 and AP, equations (42) and (43) will yield either
none, one, or two sets of real positive values of 622 and M. Each of these
sets of values of 512, 622, and KQ obtained represent a possible deflected
configuration.

Stability Analysis

From equations (37), it can be seen that stable oscillations are assured as
long as the imaginary part of @ 18 zero or positive, In addition, from equa-

tion (39), the two values of «° must be real and positive. For stability,
these conditions are assured if the following three inequalities are satisfied:
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n
Q

EMI +Mp + (3P - Q)2 +(a - 51’2)522]2 + 16078, 07 - W8

My - Mp +(5Pl + Q)'c?l2 + (Q + 3?2)822 >0 & (44)

n
o

(e + 31802 + Q822 ) (Mo + 2,8,° + Q6,7 - 5a%6126,° + 22

The stability of small oscillations about each of the static configurations,
determined by equations (40) or (42) and (43), is investigated by use of the
inequalitites (44) in order to find the flutter-speed parameter Aer- For a par-
ticular value of in-plane edge loading or shortening, the value of Aoy 1s the

lowest value of A for which no equilibrium configurations are possible about
which small oscillations are stable.

RESULTS AND DISCUSSION

Flutter-speed parameters can be determined from equations (40), (42), (43),
and (44), in conjunction with equation (3la) for specified in-plane edge loads

?g and Py or with equation (31b) for specified in-plane total shortenings M
and Av and temperature increase AT. In general these equatlions include
effects of elastic in-plane edge supports (E& and E&) and static-pressure dif-
ferential Ap. Numerical results are presented only for zero static-pressure
differential and E% = E& = 0. However, qualitative effects of static-pressure
differential are briefly discussed.

Results for Zero Static-Pressure Differential

Results, which show flutter boundaries and various regions of stability, are
presented for four in-plane boundary conditions in figures 2 to 5 for several
values of v = %?. Figures 2, 3, and 4 show results for three cases of speci-
fied in-plane edge loadings; figure 2 for ?% with ?& = 0, figure 3 for ?&
with Py, = 0, and figure 4 for ?g =~§&. Figure 5 shows results for a speci-
fied temperature change AT with zero total shortenings (AT = &V = 0) for
Bx = By = O. The results of figure 5 also correspond to specified edge short-
enings AU = AV for a zero temperature change (AT = 0) for Bg = Ey = 0. In
all four cases, results are shown in the unbuckled as well as in the buckled
range. In the unbuckled range the analysis reduces to the two-mode solution of
reference 9.
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Stability regions.- In each of figures 2 to 5, the solid curve 1s the

flutter boundary yielding MAypj; flutter occurs for speed parameters A vwhich lie

above this curve.

In each of the regions below this curve one or more static

equilibrium configurations are possible and small oscillations about at least one

of these configurstions are stable.

2k

1
t
!
i
1

P, P, AU o AT

TR

Figure 6.- Typical regions of stability and of flutter.

In order to facilitate the discussion of the

various regions of stability
and Instability, these regions
are labeled A, B, C, D, E, and
F in figure 6, which is typi-
cal of the results shown in
figures 2(3)) 2(b)) 2(0); 3,
4, and 5. The stability of
the various regions in the
special case of figure 2(d)

is determined in a similar
manner.

The unbuckled configura-
tion (El = 82 = O) is a pos-
sible equilibrium configura-
tion in all of the regions
shown in figure 6. Buckled
configurations are found to
be possible in regions B, C,
D, and E; region C contains
one such configuration,
regions B and D contain two
each, and region E contains

four. The variagtion of 512
and 522 with A for these

buckled configurations is
i1lustrated in figure 7 for
typlcal illustrative paths I,
IT, ITI, and IV which are
shown by the dotted vertical
lines of figure 6. The
points labeled by the lower-
case letters in figure 6
correspond to the similarly
labeled points of figure 7.
The four buckled equilibrium
configurations are designated
1b, 2b, 3b, and Ub in fig-
ure 7. The equilibrium con-
figurations possible in the
various reglons of figure 6



and the stability of small oscillations about these configurations are presented
in the following table:

Equilibrium configurations
Equilibrium Stebility of | | T__ — b
Reglon configuration oscillations af _— gg o
—————— ap
A Flat Steble ™ _\c
o b
s Flat and 1b Stable A )
2b Unstable
1b Stable
C ~2 ~2
Flat Unstable Co Cy
b Steable ;
D e b
Flat and 2b Unstable X 1\
£ 1b and % Stable (a) Path I. (b) Path II.
Flat, 2b, and Wb Unsteble
F Flat Unstable ___———__-_—“““‘\\\\\
' i I e’ N
/'d _________ -7 .
In region F, the only equi- e e
librium configuration possible A A
is the flat configuration and
oscillations about this config- [TTve
uration are unstable; there- & ezl 7 .
fore, this is a region of " pe--el N 2 i
flutter. In regions A, B, C, ‘_#’/)d _‘__,,,«f///
D, and E, either one or two " X
equilibrium configurations
are possible, about which (c) Peth IIT. (d) Path IV.

small oscillations are stable;
therefore, these are reglons
of no flutter.

Figure 7.- Variastion of ;° and C,2 with A
for buckled configurations.

Effects of length-width ratio and loading conditions.- Results are given in
figures 2 to 5 for v = ja/b = 0, 1/2, 1, and 2 which for j =1 (one half-wave
in cross-flow direction) correspond to ratios of length to width equal to 0, 1/2,
1, and 2, respectively. The abscissa in each of these figures (with the excep-
tion of fig. 2(d)) includes only those values of edge-load parameter up to the
one that corresponds to buckling, without airflow, into three half-waves in the
streamwise direction. Results for higher values of the abscissa would be of
doubtful value because of the assumed two-mode solution used in the analysis.

The parameter Vv = 533 corresponds to the length of panel divided by half the

wavelength in the cross-flow direction, where J is the number of half-waves in
the cross-flow direction. In applying the results of figures 2, 3, L, and 5 to a
particular value of a/b, 1t should be noted that for values of the abscissa in
the unbuckled range, the lowest value of flutter-speed parameter is always ylelded
by J = 1 although for values in the buckled range other values of J may be
more critical.
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The flutter-boundary results for v = 0 1in figure 2(a) for specified ?%,
in figure 4(a) for specified Py = Py, and in figure 5(a) for specified AU = AV
correspond to those found for the two-dimensional idealization of reference 1k,
Ehe results of figure 2(a) for the two-dimensional idealization with specified
Py shows that the flutter-speed parameter A.r decreases with an increase of
Py in the unbuckled range and then in the buckled range does not change with
further increase of Py. However, figures 2(b) and 2(c) indicate that if length-
width-ratio effects are considered, flutter-speed parameter does vary with the
magnitude of Py in the buckled range and, except for a small region shown in
figure 2(c), increased with an increase of Py. Similar length-width-ratio
effects were found for the variation of A¢r with Py = ?& in figure 4 and
with AU = Av in figure 5. This variation of flutter-speed parameter A, with

edge-load parameter 1s in qualitative agreement with experimental results. (see
refs. 4 to 7.)

Results showing the variation of Aoy with ?g for v = 2, even though not
applicable in the buckled range because of the particular modal solution assumed,
are presented in figure 2(d) since they give an indication of the problems that
arise in the analysis of long panels. ZFor such panels, the flutter-speed param-
eter first decreases to a zero value and then increases as Py increases until
buckling occurs in a mode that divides the panel into approximately square seg-
ments. Thus, in figure 2(d), the zero flutter speed occurs at Py = 15, and
buckling will occur with essentially two half-waves in the streamwlse direction.
(The buckling loads without airflow for buckling into one, two, three, or four
half-waves are given by Py = 25, 16, 18.77, and 25, respectively.) It thus
appears that for long panels with specified streamwise load ?k, the most critical

flutter problem appears in the unbuckled range. However, the picture would be
changed quantitatively 1f effects of aserodynamic damping were included; the zero
flutter speed would be precluded.

Figure 3 for specified ?& shows that before buckling, as was demonstrated
in reference 9, there is no variation of A, with Py. This situation 1s no
longer true after buckling, however, since then A, 1increases with an increase
of ?&. Although the effect of F& on flutter of unbuckled panels was negligi-

ble, these forces become significant for buckled panels.

Limitations of analysis.- The results of this analysis are limited quanti-
tatively to small values of a/b by the use of the two-mode solution and by the
assumption of aerodynamic strip theory. The results can only be extended gquali-
tatively to higher values of a/b, which are practical values for construction
purposes. A quantitative analysis for such length-width ratios would be difficult
because it would require consideration of more modes in order to allow the proper
number of waves in the streamwlse direction and would probably require a more
refined aerodynamic surface theory.

The results of the present analysis qualitatively agree with experiment (see,
for example, ref. 5) in that increasing streamwise compression (or heating of a
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restrained panel) first decreases the critical flutter speed and then after
buckling, increases it. (See figs. 2, 4, and 5.)

Effects of Static-Pressure Differential

In many experimental flutter investigations of plates, a static-pressure
differential arises across the thickness of the plate. The experimentalist has
the choice of controlling and thus eliminating this static-pressure differential
during the experiment or of including its effects on the flutter results. 1In
order to estimate these effects, the present analysis includes the contribution
of static-pressure differential. It can be seen from equations (34) and (35)
that the static-pressure differential Ap only has an effect on the static con-
figurations with an o0dd number of half-waves in the cross-flow direction (j odd).

Furthermores; Gq = G, = O 1is not a solution to equations (34) and (35) when J
1 2

is odd; therefore, in this case, the only static configurations possible are
deflected configurations. No numerical computations have been included in the
present paper, but based on the results of reference 15 for a length-width ratio
of zero (v = 0), it is expected that the effect of static-pressure differential
would be to raise the flutter boundary.

CONCLUDING REMARKS

A supersonic flutter analysis is presented for a simply supported rectangular
panel subjected either to specified in-plane compressive edge loads or to speci-
fied total in-plane shortenings along with a specified uniform temperature change.
The analysis employs a Galerkin solution, which uses two static mode shapes. The
analysis includes the effects of static-pressure differential. Numerical results
for zero static-pressure differential are presented for panels with ratios of the
length in the streamwise direction to the half-wavelength in the cross-flow direc-
tion equal to O, 1/2, 1, and 2 for the following specified in-plane boundary edge
conditions: (a) streamwise compressive loading only, (b) cross-flow compressive
loading only, (c) equal streamwise and cross-flow compressive loading or (d) uni-
form temperature increment with no in-plane displacements of the edges of the
panel. The results in the unbuckled range reduce to those found in reference 9
which showed that an increase in streamwise compression causes a decrease in
flutter speed and that the flutter speed 1s independent of cross-flow compression.
In the buckled range, the results for a length-width ratio equal to zero reduce
to those of the two-dimensional idealization of reference 1l which showed that the
flutter speed is independent of compressive load or of in-plane shortening. In
contrast the results for finite width panels indicate generally that an increase
in compressive load or in-plane shortening is accompanied by an increase in
flutter speed. The results of the analysis are found to be in qualitative agree-
ment with experiment.

No numerical results are presented for panels with static-pressure differ-

ential; however, the analysis shows qualitatively that static-pressure differen-
tial only has an effect on flutter modes which are symmetric in the cross-flow
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direction. TFor such cases the analysis also shows that the only static configu-
rations possible are deflected configurations; thus, the distinction between

buckled and unbuckled panels is obscured when effects of static-pressure differ-
ential are considered.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 11, 1962.
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